Two dimensional modeling of subsurface structure over upper Benue trough and Bornu basin in

North eastern Nigeria.

Salako, K.A. and E. E. Udensi. Department of Physics, School of Physical Sciences, Federal

University of Technology, Minna, Niger State.

Abstract

A two dimensional modelling of the subsurface structures of parts of Benue Trough and Bornu Basin,

northeast Nigeria, using aeromagnetic data was carried out in this study. The area under

investigation is bounded by latitude 9.5° N to 12.0° N and longitude 9.5° E to 12.0° E. It is covered by

25 aeromagnetic maps. The data obtained were subjected to filtering process using polyfit. Residual

data obtained were subjected to 2D subsurface modelling. The study area was covered by seven

profiles labelling, AA^{l} , BB^{l} , CC^{l} , DD^{l} , EE^{l} , FF^{l} and GG^{l} . The depth to magnetic sources results

obtained from the Source Parameter Imaging (SPI) was used as depth constraint for modelling the

residual magnetic field anomalies. The results of the 2D modelling showed that the sedimentary

thicknesses ranged from 0.0 km to a maximum depth of about 5.40 km. The highest sedimentary

thicknesses were found around Gombe, Ako Gombe, Bulkachuwa and Damaturu areas, with a value of

about 3.80 km to 5.40 km. The highest sedimentary thicknesses obtained, which range between 3.80

km to about 5.40 km is adequate for the hosting of hydrocarbons. The least sedimentary thicknesses

obtained from this study could be found around Bauchi axis in the basement complex region, Kaltungo

and volcanic area at the eastern part of the survey area. The results of this study also indicated that

Borno Basin is separated from the Upper Benue Trough at about latitude 11.0° N to 11.2° N, which

corresponds to "Dulbulwa-Bage High". This separation could have been aided by the paleostructure

called St Paul that passes through the area at that latitude. The subsurface lithology obtained from 2D

modelling of the residual field showed the presence of two lithological units. The sedimentary rock

unit underlined by the basement rock consists of shales, sandstones, limestones, siltstones, clay and

non-marine facies. The Basement rock units were composed of pegmatite, granite gneiss and

migmatites.

Keywords: Aeromagnetic data, 2D modelling, Sedimentary thickness, Source Parameter Imaging and

Subsurface lithology

Email: kasalako2012@gmail.com

Received: 2015/03/20

Accepted: 2015/06/12

DOI: http://dx.doi.org/10.4314/njtr.v10i1.S11